term algebra - definição. O que é term algebra. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é term algebra - definição


Term algebra         
FREELY GENERATED ALGEBRAIC STRUCTURE OVER A GIVEN SIGNATURE
Herbrand Universe; Herbrand atom set; Herbrand term
In universal algebra and mathematical logic, a term algebra is a freely generated algebraic structure over a given signature. For example, in a signature consisting of a single binary operation, the term algebra over a set X of variables is exactly the free magma generated by X.
Term (logic)         
  • x*(y*z)}}
  • ''Left to right:'' tree structure of the term (''n''⋅(''n''+1))/2 and ''n''⋅((''n''+1)/2)
MATHEMATICAL EXPRESSION THAT MAY FORM A SEPARABLE PART OF AN EQUATION, A SERIES, OR ANOTHER EXPRESSION; USED IN IN MATHEMATICAL LOGIC, UNIVERSAL ALGEBRA, AND REWRITING SYSTEMS
Term (first-order logic); Logic term; Variant (logic); Term (term rewriting); Linear term; Context (term rewriting); Subterm; Finite terms; First-order terms; Subterms; Renamed copy
In mathematical logic, a term denotes a mathematical object while a formula denotes a mathematical fact. In particular, terms appear as components of a formula.
*-algebra         
ALGEBRA EQUIPPED WITH AN INVOLUTION OVER A *-RING
Star algebra; *-homomorphism; * algebra; Involution algebra; Involutive algebra; *-ring; Star-algebra; * ring; Involutory ring; Involutary ring; Star ring; *algebra; Involutive ring
In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra) is a mathematical structure consisting of two involutive rings and , where is commutative and has the structure of an associative algebra over . Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints.